¹⁴N-H SPIN COUPLINGS IN PYRAZINE METHIODIDES

Toshio Goto and Minoru Isobe

Department of Agricultural Chemistry, Faculty of Agriculture,

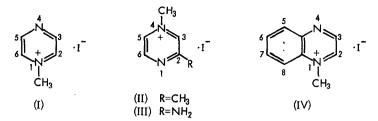
Nagoya University, Chikusa-ku, Nagoya, Japan

and

Masako Ohtsuru and Kazuo Tori

Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan

(Received in Japan 5 December 1967)


IN the course of the study of total synthesis of <u>Cypridina</u> luciferin (1) extracted from <u>Cypridina</u> <u>hilgendorfii</u>, we have found interesting spin couplings between an aromatic ¹⁴N nucleus and ring protons in the PMR spectrum of 2-amino-4-methylpyrazinium iodide (III). Biellmann and Callot have recently reported, however, that ¹⁴N-H spin couplings are observed in some N-alkylpyridinium salts having an electron-attracting substituent at C-4 (2). Their paper has driven us to report promptly our results.

In general, it is difficult to observe ¹⁴N-H couplings because the signal of a proton interacting with an ¹⁴N nucleus is broadened or decoupled by its quadrupolar relaxation. However, ¹⁴N-H couplings were clearly observed in some tetra-alkylammonium salts, alkylisonitriles, and trimethylvinylammonium salts in which electric-field gradient at the ¹⁴N nucleus is thought to be highly symmetrical, and accordingly, quadrupolar relaxation of the ¹⁴N nucleus is relatively slow (3).

We have observed the PMR spectra of 1-methylpyrazinium (I) (4), 2,4-dimethylpyrazinium (II),*¹ 2amino-4-methylpyrazinium (III) (5), and 1-methylquinoxalinium (IV) iodides in D_2O at 100 MHz.*² The assignment of the signals were made by proton magnetic double and triple resonance (PMDR and PMTR) techniques.*² On double or triple irradiation at the frequency of methyl-proton signals, ring protons

^{*&}lt;sup>1</sup> The compound II were obtained by the procedure similar to that for (I) as a mixture with its 3-methyl isomer in a ratio of about 7 : 1 (from PMR), respectively.

^{*&}lt;sup>2</sup> The PMR spectra were taken with a Varian HA-100 spectrometer operating at 100 MHz by using about 15% (w/v) solutions in D₂O. The PMDR and PMTR experiments were made by using the spectrometer with two Hewlett-Packard 200ABR audio-oscillators in the frequency-swept and DSS-locked mode.

ortho to methyl groups become sharper owing to the disappearance of weak benzylic couplings (6). Thus, the $J_{14N,H}$ and $J_{H,H}$ values were determined as listed in the TABLE by the first-order treatments. For example, the spectra of (III) are shown in the FIG. The results indicate that quarternization occurred at position 4 in (II) and (III); this is compatible with that deduced from UV spectroscopy (5). The fact that the $|J_{14N,H(\beta)}|$ values are larger than the corresponding $|J_{14N,H(\alpha)}|$ values (both have probably the

TABLE			-
Coupling Constants,	J, in	Hz	a

I	$N_1, H_2 = 1.0_5$ $N_1, H_3 = 2.8$	b
II	$N_4, H_3 = 1.0$ $N_4, H_5 = 1.1_5$ $N_4, H_6 = 2.9$	H ₃ ,H ₅ = 1.1 H ₃ ,H ₆ = 1.1 H ₅ ,H ₆ = 3.6
III	N ₄ ,H ₃ = 1.0 N ₄ ,H ₅ = 1.2 ₅ N ₄ ,H ₆ = 3.0	$H_3, H_5 = 1.5$ $H_3, H_6 = 1.0$ $H_5, H_6 = 4.0$
ı∨°	N ₁ ,H ₂ d N ₁ ,H ₃ = 2.1	$H_2, H_3 = 3.0$

- ^a The coupling constants with respect of methyl groups were not determined because of the complexity of the signals.
- ^b The ring protons belong to an A₂B₂ system. The full analysis of the signals will be reported in our full paper.
- ^c Determined at 96°.
- ^a The H₂ signal appears still as a sharp doublet even at 96° when the methyl protons were doubly irradiated.

positive sign) is in accordance with the result obtained from a study of quinoline– ^{15}N ethiodide (7).

The appearance of these obvious ¹⁴N-H splittings in the compounds is reasonably suggested to result from the presence of an electronegative N atom at the position para to the ${}^{14}N^{+}$ atom. The strong electron-attracting ability of the N atom lowers the π -electron density around the ¹⁴N⁺ nucleus; this may contribute to make the electric-field aradient at the $^{14}N^{+}$ nucleus sufficiently symmetrical. This explanation is in harmony with the fact that ¹⁴N-H splittings are clearly observed in alkylisonitriles (8), since the π -electron density around the $\frac{14}{N} \approx 100$ atom would be extremely lowered. Although in the case of N-alkylpyridinium salts, only those having an electron-attracting group at C-4 show the ¹⁴N-H splittings (2), the splittings were observed in the PMR spectra of the pyrazinium derivatives having an electron-donating group, such as a methyl or an amino

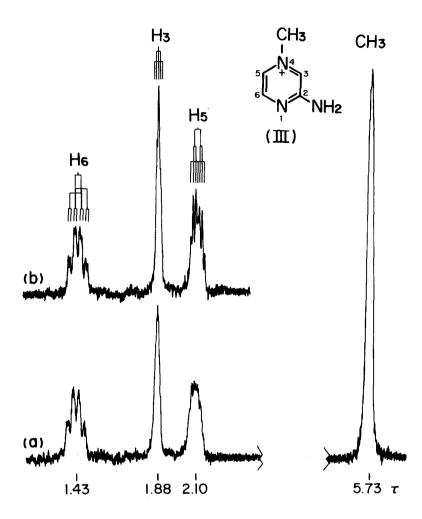


FIG. The PMR spectra of 2-amino-4-methylpyrazinium iodide (III) in D₂O at 100 MHz. (a) Normal spectrum; (b) PMDR spectrum irradiated at the frequency of the methyl resonance.

group, at position 2. This result indicates that electron-attracting power of the N atom would be very strong. In fact, the pK_a values of pyrazine (0.65) and 2-aminopyrazine (3.07) are much lower than those of pyridine (5.21) and 2-aminopyridine (6.82) (9). In our own experience, the spectrum of quinoline ethiodide in D₂O shows a sharp triplet signal for the methyl group even at 100°, while the methyl group in pyridinium ethiodide (2) shows a triplet of triplets, though somewhat broad, at 90°. The benzene ring might distort the electric-field gradient at the ${}^{14}N^{+}$ nucleus. On the other hand, in the spectrum of (IV) the ${}^{14}N-H$ splittings appeared at elevated temperatures.

REFERENCES

- 1. Y. Kishi, T. Goto, S. Inoue, S. Sugiura and H. Kishimoto, Tetrahedron Letters 3445 (1966).
- 2. J. F. Biellmann and H. Callot, Bull. Soc. chim. France 397 (1967).
- As a leading reference, see K. Tori, T. Iwata, K. Aono, M. Ohtsuru and T. Nakagawa, <u>Chem.</u> <u>Pharm. Bull. (Tokyo)</u> <u>15</u>, 329 (1967).
- 4. C. T. Bahner and L. L. Norton, J. Amer. Chem. Soc. 72, 2881 (1950).
- 5. G. W. H. Cheeseman, J. Chem. Soc. 242 (1960).
- 6. F. P. Johnson, A. Melera and S. Sternhell, Australian J. Chem. 19, 1523 (1966).
- 7. K. Tori, M. Ohtsuru, K. Aono, Y. Kawazoe and M. Ohnishi, J. Amer. Chem. Soc. 89, 2765 (1967).
- 8. I. D. Kuntz, Jr., P. von R. Schleyer and A. Allerhand, J. Chem. Phys. <u>35</u>, 1533 (1961).
- 9. D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Batterworths, London, (1965).